This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

COMPLEX FORMATION BETWEEN V(III) IONS AND 5-NITROSALICYLIC ACID. REACTION MECHANISM AND EQUILIBRIUM CONSTANTS

B. Perlmutter-hayman^a; E. Tapuhi^a ^a Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel

To cite this Article Perlmutter-hayman, B. and Tapuhi, E.(1980) 'COMPLEX FORMATION BETWEEN V(III) IONS AND 5-NITROSALICYLIC ACID. REACTION MECHANISM AND EQUILIBRIUM CONSTANTS', Journal of Coordination Chemistry, 10: 4, 219 – 222

To link to this Article: DOI: 10.1080/00958978008079866 URL: http://dx.doi.org/10.1080/00958978008079866

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMPLEX FORMATION BETWEEN V(III) IONS AND 5-NITROSALICYLIC ACID. REACTION MECHANISM AND EQUILIBRIUM CONSTANTS

B. PERLMUTTER-HAYMAN and E. TAPUHI

Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel

(Received November 1, 1979; in final form March 7, 1980)

INTRODUCTION

In continuation of our program of investigating the mechanism of the formation of complexes between tervalent cations and acids of moderate strength, we report in this Note the results of a study of the reaction between V(III) and 5-nitrosalicylic acid. Our aim was to compare the rate constants obtained with those reported previously for salicylic¹ and *p*-aminosalicylic² acids. All three ligands have identical reaction sites and differ only in their basicity.

EXPERIMENTAL

The 5-nitrosalicylic acid was Fluka "purum". Solutions of V(III) were prepared as described previously.^{1,2} The kinetic results were again^{1,2} obtained by the stopped flow technique, but using a Durrum apparatus. The temperature was 25°C throughout, and the ionic strength was 1M. The concentrations of the cation, *a*, ranged between 2.33×10^{-3} and 2.33×10^{-2} M, and were in excess over those of the ligand, *b*, which ranged between 1×10^{-4} and 2×10^{-4} M. All experiments were carried out at a wavelength of 365 nm, where the difference in absorption between the complex and the sum of absorptions of 5-nitrosalicylic acid and of V(III) solutions, at the same concentration and pH, was at its maximum.

RESULTS

Equilibrium Constants

We found it again¹⁻³ convenient to define an apparent formation constant, K_{app} , which gives the

ratio between the concentrations of total complexed and total uncomplexed participants, and depends on $[H^+]$. With the aid of K_{OH} , the hydrolysis constant of V^{3+} , and K_{H1} , the first dissociation constant of 5-nitrosalicylic acid, we can write (where "Sal" stands for the salicylic acid ion)

$$K_{app} = \frac{[\text{complex}] [\text{H}^+]}{[\text{V}^{3+}] [\text{NO}_2 \text{HSal}^-]} \times$$

$$\frac{K_{\rm H1}}{(K_{\rm OH} + [{\rm H}^+])(K_{\rm H1} + [{\rm H}^+])} \quad (1)$$

(neglecting $NO_2 Sal^{2-}$ whose relative concentration is negligibly small).⁴

At two hydrogen ion concentrations, namely 0.25 and 0.35M, K_{app} was measured spectrophotometrically, and at four hydrogen ion concentrations, namely, 0.2, 0.3, 0.4 and 0.5M, it was evaluated kinetically from the concentration-dependence of k_{obsd} , the observed, psendo-first-order, rate constant; both methods are explained in our previous papers.¹⁻³

Figure 1 shows a plot of K_{app} (K_{OH} + [H⁺])-(K_{H1} + [H⁺]) as a function of [H⁺], with ${}^{5}K_{OH}$ = 1.4 x 10⁻³ M and ${}^{3}K_{H1}$ = 5.7 x 10⁻³ M. A straight line is seen to be obtained in this range, with satisfactory agreement between the kinetic and spectrophotometric results. We conclude that there are again¹ two complexes present, and Eq. (1) can be rewritten as

$$K_{app} (K_{OH} + [H^{+}])(K_{H1} + [H^{+}]) = K_{H1}(K_{1} + K'_{1}[H^{+}])$$
(2)

with

$$K_{1} = \frac{[\text{VNO}_{2} \text{Sal}^{+}] [\text{H}^{+}]}{[\text{V}^{3+}] [\text{NO}_{2} \text{HSal}^{-}]}$$
(3)

B. PERLMUTTER-HAYMAN AND E. TAPUHI

FIGURE 1 Dependence of K_{app} ($K_{OH} + [H^+]$)($K_{HI} + [H^+]$) on $[H^+]$ (see Eq. (2)); dots represent spectrophotometric, and open circles, kinetic results.

and

$$K'_{1} = \frac{[VNO_{2} HSal^{2+}]}{[V^{3+}] [NO_{2} HSal^{-}]}$$
(4)

From the intercept and slope of Figure 1 we get the results for K_1 and K'_1 shown in Table I. For the sake of comparison, the results for salicylic acid are included in this table.

Rate Constants

At all our values of $[H^+]$ the concentration of VOH²⁺ is very much smaller⁵ than that of V³⁺, whereas its rate constant has previously been found to be no higher^{2,6-8} or even lower,¹ than that of V³⁺. Therefore, the possible reactions contributing to the observed rate are

$$V^{3+} + NO_2 HSal^{-} \xrightarrow{k_1} VNO_2 HSal^{2+}$$

$$V^{3+} + NO_2 H_2 Sal \xrightarrow{k_2} VNO_2 Sal^{+} + H^{+} (I)$$

$$V^{3+} + NO_2 H_2 Sal \xrightarrow{k_2} VNO_2 HSal^{2+} + H^{+}$$

$$WNO_2 Sal^{+} + 2H^{+} (II)$$

 TABLE I

 Comparison of equilibrium constants for V(III) complexes

acid conjugate to ligand	$10^{-2}K_1$	10 ⁻² K' ₁ , M ⁻¹	10 ³ К _{НІ} , М	^a 10 ¹⁴ K _{H2} , M	$10^{-1} {}^{3}K_{1}/K_{H2}$, M ⁻¹
^b salicylic	2.2	21	1.6	5.0	4.4×10^2
5-nitro- salicylic	11.3 ± 0.4	8.5 ± 1.0	c 5.7	7.4 × 10 ³	1.5

^areference 4; ^breference 1; ^creference 3

ГA	BI	ĴΕ	Π
----	----	----	---

Comparision of rate constants for complex formation between V^{3*} and salicylic, and substituted salicylic, acids

ligand	^a pK	$k, M^{-1} s^{-1}$	references
NO, H, Sal		3.5 ± 0.2	this work
H, Sal		4.9	^b 1
*NH, H, Sal		3.3 ± 0.1	2
NH, H, Sal		3.3 to 25	2
NO, HSal -	2.24	$(1.23 \pm 0.02) \times 10^3$	this work
HSal -	2.80	1.4×10^{3}	^b 1
*NH, HSal ⁻	2.84 to 3.44	$(1.6 \text{ to } 7.0) \times 10^3$	2
NH, HSal	3.60	$(7.0 \pm 1.6) \times 10^3$	2

^aDissociation constants of the acids conjugate to the active site;

^bInterpolated to 25°C

Assuming all the protolytic equilibria to be again¹ rapid, and taking into account that, in all our experiments, $[H^+] \ge b$ we can write¹⁻³

$$k_{\text{obsd}} = [k_1 + (k_2/K_{\text{H1}})[\text{H}^+]] \times B$$
 (5)

where

$$B = \frac{(K_{app}\bar{a} + 1)[\mathrm{H}^+]}{K_1 + K_1'[\mathrm{H}^+]}$$
(6)

A plot of k_{obsd}/B as a function of $[H^+]$ is shown in Figure 2, for twenty-eight experiments at values of $[H^+]$ between 0.20 and 0.90M. Treating this figure as a straight line in accordance with Eq. (5), we calculated the rate constants shown in Table II. (At

FIGURE 2 Dependence of k_{obsd}/B on [H⁺] (see Eq. (5)); dots represent two coinciding results, and full square represents three.

hydrogen ion concentrations of 0.1M and below, the experimental points fall very significantly below the straight line drawn in Figure 2. Since we have no data on K_{app} in this range, the complex being too strong for a satisfactory determination, we decided to disregard these results for the present.)

DISCUSSION

The equilibrium data for salicylic and 5-nitrosalicylic acids presented in Table I provide additional evidence about the nature of the two complexes we have assumed in our system.

We expect the complex to be stronger the higher the basicity of the complexing ligand. This expectation is immediately borne out for VNO₂ HSal²⁺: of the two acids, salicylic acid has the lower value of K_{H1} and, correspondingly, the higher value of K'_1 . At first sight, the opposite seems to be true for K_1 . However, since in the formation of VNO₂ Sal⁺ the phenolic proton is expelled, the appropriate comparison³ is not that between the values of K_1 on the one hand, and those of K_{H2} on the other, but rather between the values of $[VNO_2Sal^+]/[V^{3+}][NO_2Sal^{2-}] = K_1/K_{H2}$ and of K_{H_2} . The two last columns in the table show that the relation between the basicity of the ligand and the stability of the complex is now in line with the expected pattern.

On the other hand, a comparison between K'_1 and K_1/K_{H2} shows that, for each ligand, the unprotonated complex is stronger than the

protonated complex by a factor which is ~ 100 times higher than the effect expected from the different basicity of the ligand *alone*. This strengthens the assumption that $VNO_2 Sal^+$ is a chelate whereas $VHNO_2 Sal^{2+}$ is only a monodentate complex.

In our previous paper² we have already discussed not only the ligand dependence of the rate constant, but also the strong correlation between the rate constant and the basicity of the ligand which establishes V^{3+} as a hard acid.⁹⁻¹¹ This correlation becomes even more convincing now that we can compare ligands which have *identical* reactive sites but differ in their basicity. Such a comparison is presented in Table II, where we have summarized our data concerning salicylic and substituted salicylic acids. Our results thus further confirm the associative mechanism for V³⁺-complex formation.^{1,2,6-8}

The fact that Figure 2 does *not* curve upwards at low values of $[H^+]$ confirms the lack of reactivity of VOH²⁺. In this respect, V(III) differs from other tervalent cations such as Al(III)³ and Fe(III).¹² We should like to point out, however, that the lack of reactivity of the hydrolyzed species MOH²⁺ is, in itself, no proof for the associative mechanism for M³⁺, just as we do not consider³ the enhanced reactivity of MOH²⁺ as a proof for the dissociative mechanism for M³⁺.

REFERENCES

1. B. Perlmutter-Hayman and E. Tapuhi, J. Coord. Chem., 9, 177 (1979).

- 2. B. Perlmutter-Hayman and E. Tapuhi, Inorg. Chem., 18, 2872 (1979).
 B. Perlmutter-Hayman and E. Tapuhi, *Inorg. Chem.*,
- 18, 875 (1979).
- 4. D. V. Jahagirdar and D. Khanolkar, J. Inorg. Nucl. Chem., 35, 921 (1973).
- 5. L. Pajdowski, J. Inorg. Nucl. Chem., 28, 433 (1966).
- 6. R. C. Patel and H. Diebler, Ber. Bunsenges., 75, 1035 (1972).
- 7. B. R. Baker, N. Sutin and T. J. Welch, Inorg. Chem., 6, 1948 (1967).
- 8. W. Kruse and D. Thusius, Inorg. Chem., 7, 464 (1968).
- 9. R. G. Pearson, *Chem. Brit.*, 3, 103 (1967). 10. S. Ahrland, J. Chatt and N. R. Davies, *Quart. Rev. Chem.* Soc., 12, 265 (1958).
- R. G. Pearson, Science, 151, 172 (1966).
 B. Perlmutter-Hayman and E. Tapuhi, J. Coord. Chem., 6, 31 (1976).